Exercise 9.7.3

Solve the PDE

$$
\frac{\partial \psi}{\partial t}=a^{2} \frac{\partial^{2} \psi}{\partial x^{2}}
$$

to obtain $\psi(x, t)$ for a rod of infinite extent (in both the $+x$ and $-x$ directions), with a heat pulse at time $t=0$ that corresponds to $\psi_{0}(x)=A \delta(x)$.

Solution

The initial value problem to solve is

$$
\begin{aligned}
& \frac{\partial \psi}{\partial t}=a^{2} \frac{\partial^{2} \psi}{\partial x^{2}}, \quad-\infty<x<\infty, t>0 \\
& \psi(x, 0)=A \delta(x)
\end{aligned}
$$

Consider the similar problem,

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty, t>0 \\
& u(x, 0)=H(x)
\end{aligned}
$$

where $H(x)$ is the Heaviside function, defined to be 0 for $x<0$ and 1 for $x>0$. The similarity method (also known as combination of variables) will be used here: assuming that u is dimensionless, the variables in the solution must be arranged as

$$
u(x, t)=f\left(\frac{x}{\sqrt{a^{2} t}}\right)
$$

for it to be dimensionally consistent. Note that x is distance, a^{2} is distance ${ }^{2} /$ time, and t is time. Also note that the variables could be combined as $x^{2} /\left(a^{2} t\right)$, but it leads to a more complicated ODE for f. Substitute this function for u into the PDE.

$$
\begin{aligned}
\frac{\partial}{\partial t} f\left(\frac{x}{\sqrt{a^{2}} t}\right) & =a^{2} \frac{\partial^{2}}{\partial x^{2}} f\left(\frac{x}{\sqrt{a^{2} t}}\right) \\
\left(-\frac{x}{2 \sqrt{a^{2} t^{3}}}\right) f^{\prime}\left(\frac{x}{\sqrt{a^{2}} t}\right) & =a^{2}\left(\frac{1}{\sqrt{a^{2} t}}\right)^{2} f^{\prime \prime}\left(\frac{x}{\sqrt{a^{2} t}}\right) \\
-\frac{x}{2 \sqrt{a^{2} t^{3}}} f^{\prime}\left(\frac{x}{\sqrt{a^{2} t}}\right) & =\frac{1}{t} f^{\prime \prime}\left(\frac{x}{\sqrt{a^{2} t}}\right)
\end{aligned}
$$

Multiply both sides by t.

$$
-\frac{x}{2 \sqrt{a^{2} t}} f^{\prime}\left(\frac{x}{\sqrt{a^{2} t}}\right)=f^{\prime \prime}\left(\frac{x}{\sqrt{a^{2} t}}\right)
$$

Letting $\xi=x / \sqrt{a^{2} t}$, the ODE that f satisfies is

$$
f^{\prime \prime}(\xi)=-\frac{\xi}{2} f^{\prime}(\xi)
$$

Divide both sides by $f^{\prime}(\xi)$.

$$
\frac{f^{\prime \prime}}{f^{\prime}}=-\frac{\xi}{2}
$$

Rewrite the left side as $d / d \xi\left(\ln \left|f^{\prime}\right|\right)$ using the chain rule. The absolute value sign is included because the argument of the logarithm cannot be negative.

$$
\frac{d}{d \xi}\left(\ln \left|f^{\prime}\right|\right)=-\frac{\xi}{2}
$$

Integrate both sides with respect to ξ.

$$
\ln \left|f^{\prime}\right|=-\frac{\xi^{2}}{4}+C_{1}
$$

Exponentiate both sides.

$$
\begin{aligned}
\left|f^{\prime}\right| & =e^{-\xi^{2} / 4+C_{1}} \\
& =e^{C_{1}} e^{-\xi^{2} / 4}
\end{aligned}
$$

Introduce \pm on the right side to remove the absolute value sign.

$$
f^{\prime}= \pm e^{C_{1}} e^{-\xi^{2} / 4}
$$

Use a new constant C_{2} for $\pm e^{C_{1}}$.

$$
f^{\prime}=C_{2} e^{-\xi^{2} / 4}
$$

Integrate both sides with respect to ξ once more.

$$
f(\xi)=C_{2} \int_{0}^{\xi} e^{-s^{2} / 4} d s+C_{3}
$$

The lower limit of the integral has been arbitrarily set to zero; C_{3} will be adjusted to account for whatever choice we make. As a result,

$$
u(x, t)=C_{2} \int_{0}^{\frac{x}{\sqrt{a^{2} t}}} e^{-s^{2} / 4} d s+C_{3} .
$$

The constants are determined by using the initial condition $u(x, 0)=H(x)$. If $t=0$, then the upper limit becomes ∞ or $-\infty$, depending whether x is positive or negative, respectively.

$$
u(x, 0)= \begin{cases}C_{2} \int_{0}^{-\infty} e^{-s^{2} / 4} d s+C_{3}=0 & \text { if } x<0 \\ C_{2} \int_{0}^{\infty} e^{-s^{2} / 4} d s+C_{3}=1 & \text { if } x>0\end{cases}
$$

Evaluate the integrals and solve the system of equations for C_{2} and C_{3}.

$$
\left\{\begin{array} { r }
{ - \sqrt { \pi } C _ { 2 } + C _ { 3 } = 0 } \\
{ \sqrt { \pi } C _ { 2 } + C _ { 3 } = 1 }
\end{array} \rightarrow \left\{\begin{array}{l}
C_{2}=\frac{1}{2 \sqrt{\pi}} \\
C_{3}=\frac{1}{2}
\end{array}\right.\right.
$$

Consequently,

$$
u(x, t)=\frac{1}{2 \sqrt{\pi}} \int_{0}^{\frac{x}{a \sqrt{t}}} e^{-s^{2} / 4} d s+\frac{1}{2}
$$

Any constant multiple of a solution to the heat equation is also a solution to the heat equation. In addition, any derivative of a solution to the heat equation is also a solution to the heat equation. So then

$$
\psi(x, t)=A \frac{\partial}{\partial x} u(x, t),
$$

since

$$
A \frac{d}{d x} H(x)=A \delta(x) .
$$

Substitute the formula for u and simplify.

$$
\begin{aligned}
\psi(x, t) & =A \frac{\partial}{\partial x}\left(\frac{1}{2 \sqrt{\pi}} \int_{0}^{\frac{x}{a \sqrt{t}}} e^{-s^{2} / 4} d s+\frac{1}{2}\right) \\
& =\frac{A}{2 \sqrt{\pi}} \frac{\partial}{\partial x} \int_{0}^{\frac{x}{a \sqrt{t}}} e^{-s^{2} / 4} d s \\
& =\frac{A}{2 \sqrt{\pi}}\left(\frac{1}{a \sqrt{t}}\right) \exp \left[-\frac{1}{4}\left(\frac{x}{a \sqrt{t}}\right)^{2}\right]
\end{aligned}
$$

Therefore,

$$
\psi(x, t)=\frac{A}{\sqrt{4 \pi a^{2} t}} \exp \left(-\frac{x^{2}}{4 a^{2} t}\right) .
$$

